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BACKGROUND

e Inferring causal connections is an important goal for fMRI analysis

e Dynamic Causal Modeling (DCM) [1] achieves such using a hypothesis-
driven approach with limited scalability

® Major challenge for large-scale ODE network modeling is the prohibitive
computational costs for model fitting and model selection

e Yet powertul statistical machine learning and optimization tools were
less developed betfore for this topic

OBJECTIVES

e Develop large-scale causal network models for task-related tMRI
e Develop data-driven methods for selecting network models
e Validate and compare our methods

e Develop open-source, freely available software implementations

SIMULATIONS: VS DCM

Due to DCM’s high compu-
tational cost, we simulate data
from a five node network model
adapted from [4].

Recovering neural states: our

——r CDN recovers the neural state
o | g 15 time series from fMRI BOLD, see
for example the true x(¢) and esti-

mated Z(¢) from two nodes (Fig A and B above).

Network recovery: our CDN estimate yields higher AUC than DCM
while using only a small fraction of the computation time.

SIMULATIONS: VS GRANGER CAUSALITY

Across three different simula-
tion scenarios, our CDN method
s yields higher accuracy (AUC) for net-

GCA(D.5)
CON{0Q.5)

«n work recovery than Granger Causal-
«> ity Analysis (GCA) (aka vector au-
toregressive models). The AUCs for
both methods increase with increas-

ing signal-to-noise ratios.

CONCLUSION

o Computationally efficient method for inferring large brain networks

e Provide higher accuracy than other competing methods

e [ead to better understanding of brain dynamics under task stimuli
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Software: install python pkg using pip install cdn-fmri
Funding: NIH RO1EB022911

MODEL AND METHOD
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Two layer model: the first layer is the classical DCM neural model for
causal connections and stimulus activations; the second layer relates neu-
ral states to fMRI bold time series via HRF convolutions.

Method: find (A, B, C) that minimizes the following criterion
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dt + pen(A, B, C)

where y(t;) are multivaraite time series from multiple brain regions sam-
pled at discrete time points ¢;, u(t) is a vector stimulus input (shown as
vertical lines of different colors), and pen is a Lasso [2] penalty function for

encouraging parsimonious estimates.

Algorithm: [ is conditional convex and we optimize via block coordi-

nate descent.

Inference and p-values: we use block bootstrap to obtain p-values for

(A, B, C) estimates.

EXPERIMENT 1: STOP SIGNAL TASK

Data: public OpentMRI.org
dataset ds000030

Task: stop/go, event related

6 ROI model: M1, STN, Thala-
mus (Thal), SMA, anterior-preSMA
(apSMA), and posterior-preSMA
(PPSMA)

Result: figure shows significant
latent connections and activations (p-
values < 0.01). This leads to better un-
derstanding of brain dynamics, such
as the different roles of the anterior
and posterior parts of preSMA.

Data: Human Connectome Project

Task: motor, block design

264 ROI model: ROI atlas from [3]

Result: figure shows sparse and
directional connections for a 264 node
network. The estimated network can
be used in other graph analysis tools.
Our method can also recover connec-
tions and activations under different
movement stimuli (not shown here
due to space).



